Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chun-Nian Xia,* Wei-Xiao Hu and Wei Zhou

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.050$
$w R$ factor $=0.229$
Data-to-parameter ratio $=8.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Hydroxy-17-oxoestra-3,5-dien-3-yl acetate

In the title steroid compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$, rings A and B have screw boat conformations, ring C has a regular chair conformation and ring D approximates to a distorted halfchair conformation. The molecules are connected via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating a two-dimensional network.

Comment

3-Hydroxyestra-3,5-dien-17-one and its derivatives are common components of widely used hormone regulation and therapy medications (Ekhato et al., 2002).

(I)

In the title compound, (I), rings A and B both have screw boat conformations (Fig. 1). In ring A, atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C4 form a plane within a deviation of 0.057 (5) \AA, while atoms C5 and C10 lie on the same side of the plane with deviations of 0.354 (12) and 0.819 (12) Å, respectively. In ring B, atoms C5, C6, C9 and C10 form a plane within a deviation of 0.052 (4) A, while atoms C7 and C8 lie on the same side of the plane with deviations of 0.286 (12) and 0.794 (11) \AA, respectively. Ring C has a normal chair conformation, and atoms C8, C11, C12 and C14 are coplanar within a deviation of 0.023 (3) A. Ring D adopts a distorted half-chair conformation similar to that observed in related compounds (Galdecki, 1989; Andrade et al., 2003). Atoms C13, C16, C17 and O2 are coplanar within a deviation of 0.004 (6) \AA, and atoms C14 and C15 deviate from

Figure 1
The structure of (I), with 30% probability displacement ellipsoids.

Received 28 September 2005
Accepted 12 October 2005
Online 19 October 2005

Figure 2
A packing diagram for (I), viewed along the a axis, showing the hydrogen bonds as dashed lines.
the plane by $0.806(10)$ and -0.258 (12) \AA, respectively.
The crystal packing shows that hydrogen bonds generate a two-dimensional network (Fig. 2). $\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 2^{i}$ and $\mathrm{C} 20-\mathrm{H} 20 \mathrm{C} \cdots \mathrm{O} 2^{\mathrm{ii}}$ hydrogen bonds (Table 2; symmetry codes as in Table 2) link two molecules head-to-head and head-totail, respectively.

Experimental

3-Hydroxy-17-oxoestra-3,5-dien-3-yl acetate, in the form of a yellow powder, synthesized according to the method of Ekhato et al. (2002), was kindly supplied by Mr Pan of Jiubang Chemical Corporation Ltd., Shanghai, China. Crystals of (I) suitable for structure analysis were obtained as colourless plates by slow evaporation of a solution in a mixture of ethanol, dioxane and water (2:2:1).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$
$M_{r}=314.41$
Orthorhombic, $P_{\mathrm{O}} 2_{1} 2_{2} 2_{1}$
$a=6.3340(16) \AA$
$b=12.384(3) \AA$
$c=21.911(6) \AA$
$V=1718.7(8) \AA^{3}$
$Z=4$
$D_{x}=1.215 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.7-12.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, colourless
$0.40 \times 0.35 \times 0.05 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.034$
\quad diffractometer	$\theta_{\max }=25.2^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 7$
Absorption correction: ψ scan	$k=0 \rightarrow 14$
\quad (North et al., 1968)	$l=-1 \rightarrow 26$
$T_{\min }=0.968, T_{\max }=0.998$	3 standard reflections
1910 measured reflections	frequency: 60 min
1811 independent reflections	intensity decay: 0.3%

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1479 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

O1-C19	$1.354(8)$	$\mathrm{O} 3-\mathrm{C} 19$	$1.198(8)$
$\mathrm{O} 1-\mathrm{C} 3$	$1.406(7)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.323(9)$
$\mathrm{O} 2-\mathrm{C} 17$	$1.229(8)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.359(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$4.9(10)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$16.3(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$10.7(9)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 17-\mathrm{O} 2$	$31.4(10)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$3.1(10)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 19-\mathrm{O} 3$	$2.5(9)$
$\mathrm{C} 17-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$42.6(6)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O}^{2}$	0.97	2.52	$3.443(8)$	158
${\mathrm{C} 20-\mathrm{H} 20 C \cdots \mathrm{O}^{\text {ii }}}^{2}$	0.96	2.58	$3.453(9)$	152

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$.
Because of negligible anomalous scattering effects, Friedel pairs were averaged before the refinement. The absolute configuration of compound (I) was known from the synthetic route (Ekhato et al., 2002). H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.96-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

We are very grateful to the National Natural and Scientific Foundation (grant No. 20272053) and the Science and Technology Bureau of Zhejiang Province (grant No. 2005C23022). The authors express their deep appreciation to Mr Pan for generously providing the sample.

References

[^0]
organic papers

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Ekhato, I. V., Hurley, T., Lovdahl, M., Revitte, T. J., Guo, L. Y. \& Huang, Y. (2002). Steroids, 67, 165-174.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.

Galdecki, Z. (1989). J. Crystallogr. Spectrosc. Res. 19, 577-587.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: Andrade, L. C. R., Paixão, J. A., Almeida, M. J. M., Roleira, F. M. F., Nevesb, A. S. C. \& Silvab, E. J. T. (2003). Acta Cryst. E59, o21-o23.

